NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfsi2 GIF version

Theorem dfsi2 4752
Description: Express singleton image in terms of the Kuratowski singleton image. (Contributed by SF, 7-Jan-2015.)
Assertion
Ref Expression
dfsi2 SI A = ⋃11((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A))

Proof of Theorem dfsi2
Dummy variables x y z w a b c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . 5 z V
2 vex 2863 . . . . 5 w V
3 opkelsikg 4265 . . . . 5 ((z V w V) → (⟪z, w SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A) ↔ xy(z = {x} w = {y} x, y (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A))))
41, 2, 3mp2an 653 . . . 4 (⟪z, w SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A) ↔ xy(z = {x} w = {y} x, y (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A)))
5 setconslem6 4737 . . . . . . . 8 (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A) = {c ab(c = ⟪a, b a, b A)}
6 opeq1 4579 . . . . . . . . 9 (a = xa, b = x, b)
76eleq1d 2419 . . . . . . . 8 (a = x → (a, b Ax, b A))
8 opeq2 4580 . . . . . . . . 9 (b = yx, b = x, y)
98eleq1d 2419 . . . . . . . 8 (b = y → (x, b Ax, y A))
10 vex 2863 . . . . . . . 8 x V
11 vex 2863 . . . . . . . 8 y V
125, 7, 9, 10, 11opkelopkab 4247 . . . . . . 7 (⟪x, y (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A) ↔ x, y A)
13 df-br 4641 . . . . . . 7 (xAyx, y A)
1412, 13bitr4i 243 . . . . . 6 (⟪x, y (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A) ↔ xAy)
15143anbi3i 1144 . . . . 5 ((z = {x} w = {y} x, y (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A)) ↔ (z = {x} w = {y} xAy))
16152exbii 1583 . . . 4 (xy(z = {x} w = {y} x, y (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A)) ↔ xy(z = {x} w = {y} xAy))
174, 16bitri 240 . . 3 (⟪z, w SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A) ↔ xy(z = {x} w = {y} xAy))
1817opabbii 4627 . 2 {z, w z, w SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A)} = {z, w xy(z = {x} w = {y} xAy)}
19 setconslem4 4735 . 2 11((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A)) = {z, w z, w SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A)}
20 df-si 4729 . 2 SI A = {z, w xy(z = {x} w = {y} xAy)}
2118, 19, 203eqtr4ri 2384 1 SI A = ⋃11((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k SIk (((V ×k (V ×k V)) ∩ ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k 11A))
Colors of variables: wff setvar class
Syntax hints:  wb 176   w3a 934  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  {csn 3738  copk 4058  1cuni1 4134  1cc1c 4135  1cpw1 4136   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184   Ik cidk 4185   Nn cnnc 4374  0cc0c 4375  cop 4562  {copab 4623   class class class wbr 4640   SI csi 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-br 4641  df-si 4729
This theorem is referenced by:  siexg  4753
  Copyright terms: Public domain W3C validator