Detailed syntax breakdown of Definition df-swap
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cswap 4719 | 
. 2
class  Swap
 | 
| 2 |   | vx | 
. . . . . . . 8
setvar x | 
| 3 | 2 | cv 1641 | 
. . . . . . 7
class x | 
| 4 |   | vz | 
. . . . . . . . 9
setvar z | 
| 5 | 4 | cv 1641 | 
. . . . . . . 8
class z | 
| 6 |   | vw | 
. . . . . . . . 9
setvar w | 
| 7 | 6 | cv 1641 | 
. . . . . . . 8
class w | 
| 8 | 5, 7 | cop 4562 | 
. . . . . . 7
class 〈z, w〉 | 
| 9 | 3, 8 | wceq 1642 | 
. . . . . 6
wff x =
〈z,
w〉 | 
| 10 |   | vy | 
. . . . . . . 8
setvar y | 
| 11 | 10 | cv 1641 | 
. . . . . . 7
class y | 
| 12 | 7, 5 | cop 4562 | 
. . . . . . 7
class 〈w, z〉 | 
| 13 | 11, 12 | wceq 1642 | 
. . . . . 6
wff y =
〈w,
z〉 | 
| 14 | 9, 13 | wa 358 | 
. . . . 5
wff (x
= 〈z,
w〉 ∧ y = 〈w, z〉) | 
| 15 | 14, 6 | wex 1541 | 
. . . 4
wff ∃w(x = 〈z, w〉 ∧ y = 〈w, z〉) | 
| 16 | 15, 4 | wex 1541 | 
. . 3
wff ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉) | 
| 17 | 16, 2, 10 | copab 4623 | 
. 2
class {〈x, y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} | 
| 18 | 1, 17 | wceq 1642 | 
1
wff  Swap  =
{〈x,
y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} |