Detailed syntax breakdown of Definition df-swap
Step | Hyp | Ref
| Expression |
1 | | cswap 4719 |
. 2
class Swap
|
2 | | vx |
. . . . . . . 8
setvar x |
3 | 2 | cv 1641 |
. . . . . . 7
class x |
4 | | vz |
. . . . . . . . 9
setvar z |
5 | 4 | cv 1641 |
. . . . . . . 8
class z |
6 | | vw |
. . . . . . . . 9
setvar w |
7 | 6 | cv 1641 |
. . . . . . . 8
class w |
8 | 5, 7 | cop 4562 |
. . . . . . 7
class 〈z, w〉 |
9 | 3, 8 | wceq 1642 |
. . . . . 6
wff x =
〈z,
w〉 |
10 | | vy |
. . . . . . . 8
setvar y |
11 | 10 | cv 1641 |
. . . . . . 7
class y |
12 | 7, 5 | cop 4562 |
. . . . . . 7
class 〈w, z〉 |
13 | 11, 12 | wceq 1642 |
. . . . . 6
wff y =
〈w,
z〉 |
14 | 9, 13 | wa 358 |
. . . . 5
wff (x
= 〈z,
w〉 ∧ y = 〈w, z〉) |
15 | 14, 6 | wex 1541 |
. . . 4
wff ∃w(x = 〈z, w〉 ∧ y = 〈w, z〉) |
16 | 15, 4 | wex 1541 |
. . 3
wff ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉) |
17 | 16, 2, 10 | copab 4623 |
. 2
class {〈x, y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} |
18 | 1, 17 | wceq 1642 |
1
wff Swap =
{〈x,
y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} |