Step | Hyp | Ref
| Expression |
1 | | df-swap 4725 |
. . . 4
⊢ Swap = {⟨z, w⟩ ∣ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)} |
2 | 1 | eleq2i 2417 |
. . 3
⊢ (A ∈ Swap ↔ A
∈ {⟨z, w⟩ ∣ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)}) |
3 | | elopab 4697 |
. . 3
⊢ (A ∈ {⟨z, w⟩ ∣ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)} ↔ ∃z∃w(A = ⟨z, w⟩ ∧ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩))) |
4 | 2, 3 | bitri 240 |
. 2
⊢ (A ∈ Swap ↔ ∃z∃w(A = ⟨z, w⟩ ∧ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩))) |
5 | | exrot4 1745 |
. . 3
⊢ (∃z∃w∃x∃y(A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ ∃x∃y∃z∃w(A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩))) |
6 | | 19.42vv 1907 |
. . . 4
⊢ (∃x∃y(A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ (A =
⟨z,
w⟩ ∧ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩))) |
7 | 6 | 2exbii 1583 |
. . 3
⊢ (∃z∃w∃x∃y(A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ ∃z∃w(A = ⟨z, w⟩ ∧ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩))) |
8 | | df-3an 936 |
. . . . . . 7
⊢ ((z = ⟨x, y⟩ ∧ w = ⟨y, x⟩ ∧ A = ⟨z, w⟩) ↔ ((z =
⟨x,
y⟩ ∧ w = ⟨y, x⟩) ∧ A = ⟨z, w⟩)) |
9 | | ancom 437 |
. . . . . . 7
⊢ (((z = ⟨x, y⟩ ∧ w = ⟨y, x⟩) ∧ A = ⟨z, w⟩) ↔ (A =
⟨z,
w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩))) |
10 | 8, 9 | bitr2i 241 |
. . . . . 6
⊢ ((A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ (z =
⟨x,
y⟩ ∧ w = ⟨y, x⟩ ∧ A = ⟨z, w⟩)) |
11 | 10 | 2exbii 1583 |
. . . . 5
⊢ (∃z∃w(A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ ∃z∃w(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩ ∧ A = ⟨z, w⟩)) |
12 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
13 | | vex 2863 |
. . . . . . 7
⊢ y ∈
V |
14 | 12, 13 | opex 4589 |
. . . . . 6
⊢ ⟨x, y⟩ ∈ V |
15 | 13, 12 | opex 4589 |
. . . . . 6
⊢ ⟨y, x⟩ ∈ V |
16 | | opeq1 4579 |
. . . . . . 7
⊢ (z = ⟨x, y⟩ → ⟨z, w⟩ = ⟨⟨x, y⟩, w⟩) |
17 | 16 | eqeq2d 2364 |
. . . . . 6
⊢ (z = ⟨x, y⟩ → (A =
⟨z,
w⟩ ↔
A = ⟨⟨x, y⟩, w⟩)) |
18 | | opeq2 4580 |
. . . . . . 7
⊢ (w = ⟨y, x⟩ → ⟨⟨x, y⟩, w⟩ = ⟨⟨x, y⟩, ⟨y, x⟩⟩) |
19 | 18 | eqeq2d 2364 |
. . . . . 6
⊢ (w = ⟨y, x⟩ → (A =
⟨⟨x, y⟩, w⟩ ↔ A =
⟨⟨x, y⟩, ⟨y, x⟩⟩)) |
20 | 14, 15, 17, 19 | ceqsex2v 2897 |
. . . . 5
⊢ (∃z∃w(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩ ∧ A = ⟨z, w⟩) ↔ A =
⟨⟨x, y⟩, ⟨y, x⟩⟩) |
21 | 11, 20 | bitri 240 |
. . . 4
⊢ (∃z∃w(A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ A =
⟨⟨x, y⟩, ⟨y, x⟩⟩) |
22 | 21 | 2exbii 1583 |
. . 3
⊢ (∃x∃y∃z∃w(A = ⟨z, w⟩ ∧ (z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ ∃x∃y A = ⟨⟨x, y⟩, ⟨y, x⟩⟩) |
23 | 5, 7, 22 | 3bitr3i 266 |
. 2
⊢ (∃z∃w(A = ⟨z, w⟩ ∧ ∃x∃y(z = ⟨x, y⟩ ∧ w = ⟨y, x⟩)) ↔ ∃x∃y A = ⟨⟨x, y⟩, ⟨y, x⟩⟩) |
24 | 4, 23 | bitri 240 |
1
⊢ (A ∈ Swap ↔ ∃x∃y A = ⟨⟨x, y⟩, ⟨y, x⟩⟩) |