New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > brswap | GIF version |
Description: Binary relationship of Swap . (Contributed by SF, 23-Feb-2015.) |
Ref | Expression |
---|---|
brswap | ⊢ (A Swap B ↔ ∃x∃y(A = 〈x, y〉 ∧ B = 〈y, x〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . 2 ⊢ (A Swap B → (A ∈ V ∧ B ∈ V)) | |
2 | vex 2863 | . . . . . 6 ⊢ x ∈ V | |
3 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
4 | 2, 3 | opex 4589 | . . . . 5 ⊢ 〈x, y〉 ∈ V |
5 | eleq1 2413 | . . . . 5 ⊢ (A = 〈x, y〉 → (A ∈ V ↔ 〈x, y〉 ∈ V)) | |
6 | 4, 5 | mpbiri 224 | . . . 4 ⊢ (A = 〈x, y〉 → A ∈ V) |
7 | 3, 2 | opex 4589 | . . . . 5 ⊢ 〈y, x〉 ∈ V |
8 | eleq1 2413 | . . . . 5 ⊢ (B = 〈y, x〉 → (B ∈ V ↔ 〈y, x〉 ∈ V)) | |
9 | 7, 8 | mpbiri 224 | . . . 4 ⊢ (B = 〈y, x〉 → B ∈ V) |
10 | 6, 9 | anim12i 549 | . . 3 ⊢ ((A = 〈x, y〉 ∧ B = 〈y, x〉) → (A ∈ V ∧ B ∈ V)) |
11 | 10 | exlimivv 1635 | . 2 ⊢ (∃x∃y(A = 〈x, y〉 ∧ B = 〈y, x〉) → (A ∈ V ∧ B ∈ V)) |
12 | eqeq1 2359 | . . . . 5 ⊢ (a = A → (a = 〈x, y〉 ↔ A = 〈x, y〉)) | |
13 | 12 | anbi1d 685 | . . . 4 ⊢ (a = A → ((a = 〈x, y〉 ∧ b = 〈y, x〉) ↔ (A = 〈x, y〉 ∧ b = 〈y, x〉))) |
14 | 13 | 2exbidv 1628 | . . 3 ⊢ (a = A → (∃x∃y(a = 〈x, y〉 ∧ b = 〈y, x〉) ↔ ∃x∃y(A = 〈x, y〉 ∧ b = 〈y, x〉))) |
15 | eqeq1 2359 | . . . . 5 ⊢ (b = B → (b = 〈y, x〉 ↔ B = 〈y, x〉)) | |
16 | 15 | anbi2d 684 | . . . 4 ⊢ (b = B → ((A = 〈x, y〉 ∧ b = 〈y, x〉) ↔ (A = 〈x, y〉 ∧ B = 〈y, x〉))) |
17 | 16 | 2exbidv 1628 | . . 3 ⊢ (b = B → (∃x∃y(A = 〈x, y〉 ∧ b = 〈y, x〉) ↔ ∃x∃y(A = 〈x, y〉 ∧ B = 〈y, x〉))) |
18 | df-swap 4725 | . . 3 ⊢ Swap = {〈a, b〉 ∣ ∃x∃y(a = 〈x, y〉 ∧ b = 〈y, x〉)} | |
19 | 14, 17, 18 | brabg 4707 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A Swap B ↔ ∃x∃y(A = 〈x, y〉 ∧ B = 〈y, x〉))) |
20 | 1, 11, 19 | pm5.21nii 342 | 1 ⊢ (A Swap B ↔ ∃x∃y(A = 〈x, y〉 ∧ B = 〈y, x〉)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 〈cop 4562 class class class wbr 4640 Swap cswap 4719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-swap 4725 |
This theorem is referenced by: cnvswap 5511 |
Copyright terms: Public domain | W3C validator |