Step | Hyp | Ref
| Expression |
1 | | brex 4690 |
. . 3
⊢ (A Swap 〈B, C〉 →
(A ∈ V
∧ 〈B, C〉 ∈
V)) |
2 | 1 | simpld 445 |
. 2
⊢ (A Swap 〈B, C〉 → A ∈
V) |
3 | | brswap.2 |
. . . 4
⊢ C ∈
V |
4 | | br1st.1 |
. . . 4
⊢ B ∈
V |
5 | 3, 4 | opex 4589 |
. . 3
⊢ 〈C, B〉 ∈ V |
6 | | eleq1 2413 |
. . 3
⊢ (A = 〈C, B〉 → (A
∈ V ↔ 〈C, B〉 ∈ V)) |
7 | 5, 6 | mpbiri 224 |
. 2
⊢ (A = 〈C, B〉 → A
∈ V) |
8 | 4, 3 | opex 4589 |
. . 3
⊢ 〈B, C〉 ∈ V |
9 | | eqeq1 2359 |
. . . . . 6
⊢ (x = A →
(x = 〈z, w〉 ↔ A = 〈z, w〉)) |
10 | 9 | anbi1d 685 |
. . . . 5
⊢ (x = A →
((x = 〈z, w〉 ∧ y = 〈w, z〉) ↔
(A = 〈z, w〉 ∧ y = 〈w, z〉))) |
11 | 10 | 2exbidv 1628 |
. . . 4
⊢ (x = A →
(∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉) ↔ ∃z∃w(A = 〈z, w〉 ∧ y = 〈w, z〉))) |
12 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (y = 〈B, C〉 → (y =
〈w,
z〉 ↔
〈B,
C〉 =
〈w,
z〉)) |
13 | 12 | anbi2d 684 |
. . . . . . . 8
⊢ (y = 〈B, C〉 → ((A =
〈z,
w〉 ∧ y = 〈w, z〉) ↔
(A = 〈z, w〉 ∧ 〈B, C〉 = 〈w, z〉))) |
14 | | eqcom 2355 |
. . . . . . . . . . 11
⊢ (〈B, C〉 = 〈w, z〉 ↔ 〈w, z〉 = 〈B, C〉) |
15 | | opth 4603 |
. . . . . . . . . . 11
⊢ (〈w, z〉 = 〈B, C〉 ↔
(w = B
∧ z =
C)) |
16 | 14, 15 | bitri 240 |
. . . . . . . . . 10
⊢ (〈B, C〉 = 〈w, z〉 ↔
(w = B
∧ z =
C)) |
17 | 16 | anbi1i 676 |
. . . . . . . . 9
⊢ ((〈B, C〉 = 〈w, z〉 ∧ A = 〈z, w〉) ↔
((w = B
∧ z =
C) ∧
A = 〈z, w〉)) |
18 | | ancom 437 |
. . . . . . . . 9
⊢ ((A = 〈z, w〉 ∧ 〈B, C〉 = 〈w, z〉) ↔ (〈B, C〉 = 〈w, z〉 ∧ A = 〈z, w〉)) |
19 | | df-3an 936 |
. . . . . . . . 9
⊢ ((w = B ∧ z = C ∧ A = 〈z, w〉) ↔ ((w =
B ∧
z = C)
∧ A =
〈z,
w〉)) |
20 | 17, 18, 19 | 3bitr4ri 269 |
. . . . . . . 8
⊢ ((w = B ∧ z = C ∧ A = 〈z, w〉) ↔ (A =
〈z,
w〉 ∧ 〈B, C〉 = 〈w, z〉)) |
21 | 13, 20 | syl6bbr 254 |
. . . . . . 7
⊢ (y = 〈B, C〉 → ((A =
〈z,
w〉 ∧ y = 〈w, z〉) ↔
(w = B
∧ z =
C ∧
A = 〈z, w〉))) |
22 | 21 | 2exbidv 1628 |
. . . . . 6
⊢ (y = 〈B, C〉 → (∃z∃w(A = 〈z, w〉 ∧ y = 〈w, z〉) ↔ ∃z∃w(w = B ∧ z = C ∧ A = 〈z, w〉))) |
23 | | excom 1741 |
. . . . . 6
⊢ (∃z∃w(w = B ∧ z = C ∧ A = 〈z, w〉) ↔ ∃w∃z(w = B ∧ z = C ∧ A = 〈z, w〉)) |
24 | 22, 23 | syl6bb 252 |
. . . . 5
⊢ (y = 〈B, C〉 → (∃z∃w(A = 〈z, w〉 ∧ y = 〈w, z〉) ↔ ∃w∃z(w = B ∧ z = C ∧ A = 〈z, w〉))) |
25 | | opeq2 4580 |
. . . . . . 7
⊢ (w = B →
〈z,
w〉 =
〈z,
B〉) |
26 | 25 | eqeq2d 2364 |
. . . . . 6
⊢ (w = B →
(A = 〈z, w〉 ↔ A = 〈z, B〉)) |
27 | | opeq1 4579 |
. . . . . . 7
⊢ (z = C →
〈z,
B〉 =
〈C,
B〉) |
28 | 27 | eqeq2d 2364 |
. . . . . 6
⊢ (z = C →
(A = 〈z, B〉 ↔ A = 〈C, B〉)) |
29 | 4, 3, 26, 28 | ceqsex2v 2897 |
. . . . 5
⊢ (∃w∃z(w = B ∧ z = C ∧ A = 〈z, w〉) ↔ A =
〈C,
B〉) |
30 | 24, 29 | syl6bb 252 |
. . . 4
⊢ (y = 〈B, C〉 → (∃z∃w(A = 〈z, w〉 ∧ y = 〈w, z〉) ↔ A =
〈C,
B〉)) |
31 | | df-swap 4725 |
. . . 4
⊢ Swap = {〈x, y〉 ∣ ∃z∃w(x = 〈z, w〉 ∧ y = 〈w, z〉)} |
32 | 11, 30, 31 | brabg 4707 |
. . 3
⊢ ((A ∈ V ∧ 〈B, C〉 ∈ V) →
(A Swap 〈B, C〉 ↔ A = 〈C, B〉)) |
33 | 8, 32 | mpan2 652 |
. 2
⊢ (A ∈ V →
(A Swap 〈B, C〉 ↔ A = 〈C, B〉)) |
34 | 2, 7, 33 | pm5.21nii 342 |
1
⊢ (A Swap 〈B, C〉 ↔ A = 〈C, B〉) |