Detailed syntax breakdown of Definition df-tfin
Step | Hyp | Ref
| Expression |
1 | | cM |
. . 3
class M |
2 | 1 | ctfin 4436 |
. 2
class Tfin M |
3 | | c0 3551 |
. . . 4
class ∅ |
4 | 1, 3 | wceq 1642 |
. . 3
wff M =
∅ |
5 | | vn |
. . . . . . 7
setvar n |
6 | 5 | cv 1641 |
. . . . . 6
class n |
7 | | cnnc 4374 |
. . . . . 6
class Nn |
8 | 6, 7 | wcel 1710 |
. . . . 5
wff n
∈ Nn |
9 | | va |
. . . . . . . . 9
setvar a |
10 | 9 | cv 1641 |
. . . . . . . 8
class a |
11 | 10 | cpw1 4136 |
. . . . . . 7
class ℘1a |
12 | 11, 6 | wcel 1710 |
. . . . . 6
wff ℘1a ∈ n |
13 | 12, 9, 1 | wrex 2616 |
. . . . 5
wff ∃a ∈ M ℘1a ∈ n |
14 | 8, 13 | wa 358 |
. . . 4
wff (n
∈ Nn ∧ ∃a ∈ M ℘1a ∈ n) |
15 | 14, 5 | cio 4338 |
. . 3
class (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n)) |
16 | 4, 3, 15 | cif 3663 |
. 2
class if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) |
17 | 2, 16 | wceq 1642 |
1
wff Tfin M =
if(M = ∅, ∅,
(℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) |