Detailed syntax breakdown of Definition df-tfin
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cM | 
. . 3
class M | 
| 2 | 1 | ctfin 4436 | 
. 2
class  Tfin M | 
| 3 |   | c0 3551 | 
. . . 4
class ∅ | 
| 4 | 1, 3 | wceq 1642 | 
. . 3
wff M =
∅ | 
| 5 |   | vn | 
. . . . . . 7
setvar n | 
| 6 | 5 | cv 1641 | 
. . . . . 6
class n | 
| 7 |   | cnnc 4374 | 
. . . . . 6
class  Nn | 
| 8 | 6, 7 | wcel 1710 | 
. . . . 5
wff n
∈ Nn | 
| 9 |   | va | 
. . . . . . . . 9
setvar a | 
| 10 | 9 | cv 1641 | 
. . . . . . . 8
class a | 
| 11 | 10 | cpw1 4136 | 
. . . . . . 7
class ℘1a | 
| 12 | 11, 6 | wcel 1710 | 
. . . . . 6
wff ℘1a ∈ n | 
| 13 | 12, 9, 1 | wrex 2616 | 
. . . . 5
wff ∃a ∈ M ℘1a ∈ n | 
| 14 | 8, 13 | wa 358 | 
. . . 4
wff (n
∈ Nn ∧ ∃a ∈ M ℘1a ∈ n) | 
| 15 | 14, 5 | cio 4338 | 
. . 3
class (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n)) | 
| 16 | 4, 3, 15 | cif 3663 | 
. 2
class  if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) | 
| 17 | 2, 16 | wceq 1642 | 
1
wff  Tfin M =
if(M = ∅, ∅,
(℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) |