![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > df-evenfin | GIF version |
Description: Define the temporary set of all even numbers. This differs from the final definition due to the non-null condition. Definition from [Rosser] p. 529. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
df-evenfin | ⊢ Evenfin = {x ∣ (∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cevenfin 4437 | . 2 class Evenfin | |
2 | vx | . . . . . . 7 setvar x | |
3 | 2 | cv 1641 | . . . . . 6 class x |
4 | vn | . . . . . . . 8 setvar n | |
5 | 4 | cv 1641 | . . . . . . 7 class n |
6 | 5, 5 | cplc 4376 | . . . . . 6 class (n +c n) |
7 | 3, 6 | wceq 1642 | . . . . 5 wff x = (n +c n) |
8 | cnnc 4374 | . . . . 5 class Nn | |
9 | 7, 4, 8 | wrex 2616 | . . . 4 wff ∃n ∈ Nn x = (n +c n) |
10 | c0 3551 | . . . . 5 class ∅ | |
11 | 3, 10 | wne 2517 | . . . 4 wff x ≠ ∅ |
12 | 9, 11 | wa 358 | . . 3 wff (∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅) |
13 | 12, 2 | cab 2339 | . 2 class {x ∣ (∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅)} |
14 | 1, 13 | wceq 1642 | 1 wff Evenfin = {x ∣ (∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅)} |
Colors of variables: wff setvar class |
This definition is referenced by: evenfinex 4504 0ceven 4506 evennn 4507 evennnul 4509 sucevenodd 4511 sucoddeven 4512 dfevenfin2 4513 eventfin 4518 |
Copyright terms: Public domain | W3C validator |