Detailed syntax breakdown of Definition df-evenfin
Step | Hyp | Ref
| Expression |
1 | | cevenfin 4436 |
. 2
class Evenfin |
2 | | vx |
. . . . . . 7
setvar x |
3 | 2 | cv 1641 |
. . . . . 6
class x |
4 | | vn |
. . . . . . . 8
setvar n |
5 | 4 | cv 1641 |
. . . . . . 7
class n |
6 | 5, 5 | cplc 4375 |
. . . . . 6
class (n +c n) |
7 | 3, 6 | wceq 1642 |
. . . . 5
wff x =
(n +c n) |
8 | | cnnc 4373 |
. . . . 5
class Nn |
9 | 7, 4, 8 | wrex 2615 |
. . . 4
wff ∃n ∈ Nn x = (n
+c n) |
10 | | c0 3550 |
. . . . 5
class ∅ |
11 | 3, 10 | wne 2516 |
. . . 4
wff x
≠ ∅ |
12 | 9, 11 | wa 358 |
. . 3
wff (∃n ∈ Nn x = (n
+c n) ∧ x ≠ ∅) |
13 | 12, 2 | cab 2339 |
. 2
class {x ∣ (∃n ∈ Nn x = (n
+c n) ∧ x ≠ ∅)} |
14 | 1, 13 | wceq 1642 |
1
wff Evenfin = {x ∣ (∃n ∈ Nn x = (n
+c n) ∧ x ≠ ∅)} |