| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > tfinprop | GIF version | ||
| Description: Properties of the finite T operator for a nonempty natural. Theorem X.1.28 of [Rosser] p. 528. (Contributed by SF, 22-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| tfinprop | ⊢ ((M ∈ Nn ∧ M ≠ ∅) → ( Tfin M ∈ Nn ∧ ∃a ∈ M ℘1a ∈ Tfin M)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-tfin 4444 | . . 3 ⊢ Tfin M = if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) | |
| 2 | df-ne 2519 | . . . . . 6 ⊢ (M ≠ ∅ ↔ ¬ M = ∅) | |
| 3 | iffalse 3670 | . . . . . 6 ⊢ (¬ M = ∅ → if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) = (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) | |
| 4 | 2, 3 | sylbi 187 | . . . . 5 ⊢ (M ≠ ∅ → if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) = (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) | 
| 5 | 4 | adantl 452 | . . . 4 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) = (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) | 
| 6 | nnpw1ex 4485 | . . . . 5 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → ∃!n ∈ Nn ∃a ∈ M ℘1a ∈ n) | |
| 7 | reiotacl 4365 | . . . . 5 ⊢ (∃!n ∈ Nn ∃a ∈ M ℘1a ∈ n → (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n)) ∈ Nn ) | |
| 8 | 6, 7 | syl 15 | . . . 4 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n)) ∈ Nn ) | 
| 9 | 5, 8 | eqeltrd 2427 | . . 3 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → if(M = ∅, ∅, (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n))) ∈ Nn ) | 
| 10 | 1, 9 | syl5eqel 2437 | . 2 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → Tfin M ∈ Nn ) | 
| 11 | 1, 5 | syl5req 2398 | . . 3 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n)) = Tfin M) | 
| 12 | 10, 6 | jca 518 | . . . 4 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → ( Tfin M ∈ Nn ∧ ∃!n ∈ Nn ∃a ∈ M ℘1a ∈ n)) | 
| 13 | eleq2 2414 | . . . . . 6 ⊢ (n = Tfin M → (℘1a ∈ n ↔ ℘1a ∈ Tfin M)) | |
| 14 | 13 | rexbidv 2636 | . . . . 5 ⊢ (n = Tfin M → (∃a ∈ M ℘1a ∈ n ↔ ∃a ∈ M ℘1a ∈ Tfin M)) | 
| 15 | 14 | reiota2 4369 | . . . 4 ⊢ (( Tfin M ∈ Nn ∧ ∃!n ∈ Nn ∃a ∈ M ℘1a ∈ n) → (∃a ∈ M ℘1a ∈ Tfin M ↔ (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n)) = Tfin M)) | 
| 16 | 12, 15 | syl 15 | . . 3 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → (∃a ∈ M ℘1a ∈ Tfin M ↔ (℩n(n ∈ Nn ∧ ∃a ∈ M ℘1a ∈ n)) = Tfin M)) | 
| 17 | 11, 16 | mpbird 223 | . 2 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → ∃a ∈ M ℘1a ∈ Tfin M) | 
| 18 | 10, 17 | jca 518 | 1 ⊢ ((M ∈ Nn ∧ M ≠ ∅) → ( Tfin M ∈ Nn ∧ ∃a ∈ M ℘1a ∈ Tfin M)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 ∃!wreu 2617 ∅c0 3551 ifcif 3663 ℘1cpw1 4136 ℩cio 4338 Nn cnnc 4374 Tfin ctfin 4436 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-tfin 4444 | 
| This theorem is referenced by: tfinnnul 4491 tfincl 4493 tfin11 4494 tfinpw1 4495 tfinltfinlem1 4501 tfinltfin 4502 eventfin 4518 oddtfin 4519 sfinltfin 4536 vfinncvntnn 4549 | 
| Copyright terms: Public domain | W3C validator |