NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tfinex GIF version

Theorem tfinex 4486
Description: The finite T operator is always a set. (Contributed by SF, 26-Jan-2015.)
Assertion
Ref Expression
tfinex Tfin A V

Proof of Theorem tfinex
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tfin 4444 . 2 Tfin A = if(A = , , (℩x(x Nn y A 1y x)))
2 0ex 4111 . . 3 V
3 iotaex 4357 . . 3 (℩x(x Nn y A 1y x)) V
42, 3ifex 3721 . 2 if(A = , , (℩x(x Nn y A 1y x))) V
51, 4eqeltri 2423 1 Tfin A V
Colors of variables: wff setvar class
Syntax hints:   wa 358   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  c0 3551   ifcif 3663  1cpw1 4136  cio 4338   Nn cnnc 4374   Tfin ctfin 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-if 3664  df-sn 3742  df-pr 3743  df-uni 3893  df-iota 4340  df-tfin 4444
This theorem is referenced by:  tfinltfinlem1  4501  tfinltfin  4502  eventfin  4518  oddtfin  4519  sfintfinlem1  4532  tfinnnlem1  4534  tfinnn  4535  vfinspsslem1  4551
  Copyright terms: Public domain W3C validator