| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-un | GIF version | ||
| Description: Define the union of two classes. See elun 3221 for membership. (Contributed by SF, 10-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| df-un | ⊢ (A ∪ B) = ( ∼ A ⩃ ∼ B) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | cB | . . 3 class B | |
| 3 | 1, 2 | cun 3208 | . 2 class (A ∪ B) | 
| 4 | 1 | ccompl 3206 | . . 3 class ∼ A | 
| 5 | 2 | ccompl 3206 | . . 3 class ∼ B | 
| 6 | 4, 5 | cnin 3205 | . 2 class ( ∼ A ⩃ ∼ B) | 
| 7 | 3, 6 | wceq 1642 | 1 wff (A ∪ B) = ( ∼ A ⩃ ∼ B) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: elun 3221 nfun 3232 symdifeq1 3249 symdifeq2 3250 dfin5 3546 uncompl 4075 unexg 4102 | 
| Copyright terms: Public domain | W3C validator |