New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-un | GIF version |
Description: Define the union of two classes. See elun 3221 for membership. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
df-un | ⊢ (A ∪ B) = ( ∼ A ⩃ ∼ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | cun 3208 | . 2 class (A ∪ B) |
4 | 1 | ccompl 3206 | . . 3 class ∼ A |
5 | 2 | ccompl 3206 | . . 3 class ∼ B |
6 | 4, 5 | cnin 3205 | . 2 class ( ∼ A ⩃ ∼ B) |
7 | 3, 6 | wceq 1642 | 1 wff (A ∪ B) = ( ∼ A ⩃ ∼ B) |
Colors of variables: wff setvar class |
This definition is referenced by: elun 3221 nfun 3232 symdifeq1 3249 symdifeq2 3250 dfin5 3546 uncompl 4075 unexg 4102 |
Copyright terms: Public domain | W3C validator |