NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unexg GIF version

Theorem unexg 4102
Description: The union of two sets is a set. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
unexg ((A V B W) → (AB) V)

Proof of Theorem unexg
StepHypRef Expression
1 df-un 3215 . 2 (AB) = ( ∼ A ⩃ ∼ B)
2 complexg 4100 . . 3 (A V → ∼ A V)
3 complexg 4100 . . 3 (B W → ∼ B V)
4 ninexg 4098 . . 3 (( ∼ A V B V) → ( ∼ A ⩃ ∼ B) V)
52, 3, 4syl2an 463 . 2 ((A V B W) → ( ∼ A ⩃ ∼ B) V)
61, 5syl5eqel 2437 1 ((A V B W) → (AB) V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  Vcvv 2860  cnin 3205  ccompl 3206  cun 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215
This theorem is referenced by:  symdifexg  4104  unex  4107  imakexg  4300  ncfindi  4476  opexg  4588  cupvalg  5813  fullfunexg  5860  addccan2nclem2  6265
  Copyright terms: Public domain W3C validator