NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfun GIF version

Theorem nfun 3231
Description: Hypothesis builder for union. (Contributed by SF, 2-Jan-2018.)
Hypotheses
Ref Expression
nfbool.1 xA
nfbool.2 xB
Assertion
Ref Expression
nfun x(AB)

Proof of Theorem nfun
StepHypRef Expression
1 df-un 3214 . 2 (AB) = ( ∼ A ⩃ ∼ B)
2 nfbool.1 . . . 4 xA
32nfcompl 3229 . . 3 xA
4 nfbool.2 . . . 4 xB
54nfcompl 3229 . . 3 xB
63, 5nfnin 3228 . 2 x( ∼ A ⩃ ∼ B)
71, 6nfcxfr 2486 1 x(AB)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2476  cnin 3204  ccompl 3205  cun 3207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-nin 3211  df-compl 3212  df-un 3214
This theorem is referenced by:  nfsymdif  3233  nfop  4604
  Copyright terms: Public domain W3C validator