New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > symdifeq1 | GIF version |
Description: Equality law for intersection. (Contributed by SF, 11-Jan-2015.) |
Ref | Expression |
---|---|
symdifeq1 | ⊢ (A = B → (A ⊕ C) = (B ⊕ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1 3247 | . . . 4 ⊢ (A = B → (A ∖ C) = (B ∖ C)) | |
2 | 1 | compleqd 3246 | . . 3 ⊢ (A = B → ∼ (A ∖ C) = ∼ (B ∖ C)) |
3 | difeq2 3248 | . . . 4 ⊢ (A = B → (C ∖ A) = (C ∖ B)) | |
4 | 3 | compleqd 3246 | . . 3 ⊢ (A = B → ∼ (C ∖ A) = ∼ (C ∖ B)) |
5 | 2, 4 | nineq12d 3243 | . 2 ⊢ (A = B → ( ∼ (A ∖ C) ⩃ ∼ (C ∖ A)) = ( ∼ (B ∖ C) ⩃ ∼ (C ∖ B))) |
6 | df-symdif 3217 | . . 3 ⊢ (A ⊕ C) = ((A ∖ C) ∪ (C ∖ A)) | |
7 | df-un 3215 | . . 3 ⊢ ((A ∖ C) ∪ (C ∖ A)) = ( ∼ (A ∖ C) ⩃ ∼ (C ∖ A)) | |
8 | 6, 7 | eqtri 2373 | . 2 ⊢ (A ⊕ C) = ( ∼ (A ∖ C) ⩃ ∼ (C ∖ A)) |
9 | df-symdif 3217 | . . 3 ⊢ (B ⊕ C) = ((B ∖ C) ∪ (C ∖ B)) | |
10 | df-un 3215 | . . 3 ⊢ ((B ∖ C) ∪ (C ∖ B)) = ( ∼ (B ∖ C) ⩃ ∼ (C ∖ B)) | |
11 | 9, 10 | eqtri 2373 | . 2 ⊢ (B ⊕ C) = ( ∼ (B ∖ C) ⩃ ∼ (C ∖ B)) |
12 | 5, 8, 11 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A ⊕ C) = (B ⊕ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⩃ cnin 3205 ∼ ccompl 3206 ∖ cdif 3207 ∪ cun 3208 ⊕ csymdif 3210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 |
This theorem is referenced by: symdifeq12 3251 symdifeq1i 3252 symdifeq1d 3255 |
Copyright terms: Public domain | W3C validator |