New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfin5 | GIF version |
Description: Definition of intersection in terms of union. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
dfin5 | ⊢ (A ∩ B) = ∼ ( ∼ A ∪ ∼ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dblcompl 3228 | . . . 4 ⊢ ∼ ∼ A = A | |
2 | dblcompl 3228 | . . . 4 ⊢ ∼ ∼ B = B | |
3 | 1, 2 | nineq12i 3240 | . . 3 ⊢ ( ∼ ∼ A ⩃ ∼ ∼ B) = (A ⩃ B) |
4 | 3 | compleqi 3245 | . 2 ⊢ ∼ ( ∼ ∼ A ⩃ ∼ ∼ B) = ∼ (A ⩃ B) |
5 | df-un 3215 | . . 3 ⊢ ( ∼ A ∪ ∼ B) = ( ∼ ∼ A ⩃ ∼ ∼ B) | |
6 | 5 | compleqi 3245 | . 2 ⊢ ∼ ( ∼ A ∪ ∼ B) = ∼ ( ∼ ∼ A ⩃ ∼ ∼ B) |
7 | df-in 3214 | . 2 ⊢ (A ∩ B) = ∼ (A ⩃ B) | |
8 | 4, 6, 7 | 3eqtr4ri 2384 | 1 ⊢ (A ∩ B) = ∼ ( ∼ A ∪ ∼ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ⩃ cnin 3205 ∼ ccompl 3206 ∪ cun 3208 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 |
This theorem is referenced by: dfun4 3547 iunin 3548 |
Copyright terms: Public domain | W3C validator |