New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-dif | GIF version |
Description: Define the difference of two classes. See eldif 3222 for membership. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
df-dif | ⊢ (A ∖ B) = (A ∩ ∼ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | cdif 3207 | . 2 class (A ∖ B) |
4 | 2 | ccompl 3206 | . . 3 class ∼ B |
5 | 1, 4 | cin 3209 | . 2 class (A ∩ ∼ B) |
6 | 3, 5 | wceq 1642 | 1 wff (A ∖ B) = (A ∩ ∼ B) |
Colors of variables: wff setvar class |
This definition is referenced by: eldif 3222 nfdif 3233 difeq1 3247 difeq2 3248 difsscompl 3550 compldif 4070 inindif 4076 difexg 4103 nnsucelrlem3 4427 ssfin 4471 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |