New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-uni | GIF version |
Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, ∪{{ 1 , 3 }, { 1 , 8 }} = { 1 , 3 , 8 } (ex-uni in set.mm). This is similar to the union of two classes df-un 3215. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
df-uni | ⊢ ∪A = {x ∣ ∃y(x ∈ y ∧ y ∈ A)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | 1 | cuni 3892 | . 2 class ∪A |
3 | vx | . . . . . 6 setvar x | |
4 | vy | . . . . . 6 setvar y | |
5 | 3, 4 | wel 1711 | . . . . 5 wff x ∈ y |
6 | 4 | cv 1641 | . . . . . 6 class y |
7 | 6, 1 | wcel 1710 | . . . . 5 wff y ∈ A |
8 | 5, 7 | wa 358 | . . . 4 wff (x ∈ y ∧ y ∈ A) |
9 | 8, 4 | wex 1541 | . . 3 wff ∃y(x ∈ y ∧ y ∈ A) |
10 | 9, 3 | cab 2339 | . 2 class {x ∣ ∃y(x ∈ y ∧ y ∈ A)} |
11 | 2, 10 | wceq 1642 | 1 wff ∪A = {x ∣ ∃y(x ∈ y ∧ y ∈ A)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfuni2 3894 eluni 3895 csbunig 3900 |
Copyright terms: Public domain | W3C validator |