| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-uni | GIF version | ||
| Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, ∪{{ 1 , 3 }, { 1 , 8 }} = { 1 , 3 , 8 } (ex-uni in set.mm). This is similar to the union of two classes df-un 3215. (Contributed by NM, 23-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| df-uni | ⊢ ∪A = {x ∣ ∃y(x ∈ y ∧ y ∈ A)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | 1 | cuni 3892 | . 2 class ∪A | 
| 3 | vx | . . . . . 6 setvar x | |
| 4 | vy | . . . . . 6 setvar y | |
| 5 | 3, 4 | wel 1711 | . . . . 5 wff x ∈ y | 
| 6 | 4 | cv 1641 | . . . . . 6 class y | 
| 7 | 6, 1 | wcel 1710 | . . . . 5 wff y ∈ A | 
| 8 | 5, 7 | wa 358 | . . . 4 wff (x ∈ y ∧ y ∈ A) | 
| 9 | 8, 4 | wex 1541 | . . 3 wff ∃y(x ∈ y ∧ y ∈ A) | 
| 10 | 9, 3 | cab 2339 | . 2 class {x ∣ ∃y(x ∈ y ∧ y ∈ A)} | 
| 11 | 2, 10 | wceq 1642 | 1 wff ∪A = {x ∣ ∃y(x ∈ y ∧ y ∈ A)} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dfuni2 3894 eluni 3895 csbunig 3900 | 
| Copyright terms: Public domain | W3C validator |