New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfuni2 | GIF version |
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfuni2 | ⊢ ∪A = {x ∣ ∃y ∈ A x ∈ y} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uni 3893 | . 2 ⊢ ∪A = {x ∣ ∃y(x ∈ y ∧ y ∈ A)} | |
2 | exancom 1586 | . . . 4 ⊢ (∃y(x ∈ y ∧ y ∈ A) ↔ ∃y(y ∈ A ∧ x ∈ y)) | |
3 | df-rex 2621 | . . . 4 ⊢ (∃y ∈ A x ∈ y ↔ ∃y(y ∈ A ∧ x ∈ y)) | |
4 | 2, 3 | bitr4i 243 | . . 3 ⊢ (∃y(x ∈ y ∧ y ∈ A) ↔ ∃y ∈ A x ∈ y) |
5 | 4 | abbii 2466 | . 2 ⊢ {x ∣ ∃y(x ∈ y ∧ y ∈ A)} = {x ∣ ∃y ∈ A x ∈ y} |
6 | 1, 5 | eqtri 2373 | 1 ⊢ ∪A = {x ∣ ∃y ∈ A x ∈ y} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-rex 2621 df-uni 3893 |
This theorem is referenced by: nfuni 3898 nfunid 3899 unieq 3901 uniiun 4020 |
Copyright terms: Public domain | W3C validator |