New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eluni | GIF version |
Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
Ref | Expression |
---|---|
eluni | ⊢ (A ∈ ∪B ↔ ∃x(A ∈ x ∧ x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ ∪B → A ∈ V) | |
2 | elex 2868 | . . . 4 ⊢ (A ∈ x → A ∈ V) | |
3 | 2 | adantr 451 | . . 3 ⊢ ((A ∈ x ∧ x ∈ B) → A ∈ V) |
4 | 3 | exlimiv 1634 | . 2 ⊢ (∃x(A ∈ x ∧ x ∈ B) → A ∈ V) |
5 | eleq1 2413 | . . . . 5 ⊢ (y = A → (y ∈ x ↔ A ∈ x)) | |
6 | 5 | anbi1d 685 | . . . 4 ⊢ (y = A → ((y ∈ x ∧ x ∈ B) ↔ (A ∈ x ∧ x ∈ B))) |
7 | 6 | exbidv 1626 | . . 3 ⊢ (y = A → (∃x(y ∈ x ∧ x ∈ B) ↔ ∃x(A ∈ x ∧ x ∈ B))) |
8 | df-uni 3893 | . . 3 ⊢ ∪B = {y ∣ ∃x(y ∈ x ∧ x ∈ B)} | |
9 | 7, 8 | elab2g 2988 | . 2 ⊢ (A ∈ V → (A ∈ ∪B ↔ ∃x(A ∈ x ∧ x ∈ B))) |
10 | 1, 4, 9 | pm5.21nii 342 | 1 ⊢ (A ∈ ∪B ↔ ∃x(A ∈ x ∧ x ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-uni 3893 |
This theorem is referenced by: eluni2 3896 elunii 3897 eluniab 3904 unipr 3906 uniun 3911 uniin 3912 uniss 3913 unissb 3922 unipw 4118 eluni1g 4173 unipw1 4326 nnadjoinlem1 4520 dmuni 4915 rnuni 5039 fununi 5161 funiunfv 5468 pw1fnex 5853 tcfnex 6245 |
Copyright terms: Public domain | W3C validator |