NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbunig GIF version

Theorem csbunig 3900
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbunig (A V[A / x]B = [A / x]B)

Proof of Theorem csbunig
Dummy variables y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3198 . . 3 (A V[A / x]{z y(z y y B)} = {z A / xy(z y y B)})
2 sbcexg 3097 . . . . 5 (A V → ([̣A / xy(z y y B) ↔ yA / x]̣(z y y B)))
3 sbcang 3090 . . . . . . 7 (A V → ([̣A / x]̣(z y y B) ↔ ([̣A / xz y A / xy B)))
4 sbcg 3112 . . . . . . . 8 (A V → ([̣A / xz yz y))
5 sbcel2g 3158 . . . . . . . 8 (A V → ([̣A / xy By [A / x]B))
64, 5anbi12d 691 . . . . . . 7 (A V → (([̣A / xz y A / xy B) ↔ (z y y [A / x]B)))
73, 6bitrd 244 . . . . . 6 (A V → ([̣A / x]̣(z y y B) ↔ (z y y [A / x]B)))
87exbidv 1626 . . . . 5 (A V → (yA / x]̣(z y y B) ↔ y(z y y [A / x]B)))
92, 8bitrd 244 . . . 4 (A V → ([̣A / xy(z y y B) ↔ y(z y y [A / x]B)))
109abbidv 2468 . . 3 (A V → {z A / xy(z y y B)} = {z y(z y y [A / x]B)})
111, 10eqtrd 2385 . 2 (A V[A / x]{z y(z y y B)} = {z y(z y y [A / x]B)})
12 df-uni 3893 . . 3 B = {z y(z y y B)}
1312csbeq2i 3163 . 2 [A / x]B = [A / x]{z y(z y y B)}
14 df-uni 3893 . 2 [A / x]B = {z y(z y y [A / x]B)}
1511, 13, 143eqtr4g 2410 1 (A V[A / x]B = [A / x]B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wsbc 3047  [csb 3137  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138  df-uni 3893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator