| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exlimdh | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.) |
| Ref | Expression |
|---|---|
| exlimdh.1 | ⊢ (φ → ∀xφ) |
| exlimdh.2 | ⊢ (χ → ∀xχ) |
| exlimdh.3 | ⊢ (φ → (ψ → χ)) |
| Ref | Expression |
|---|---|
| exlimdh | ⊢ (φ → (∃xψ → χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdh.1 | . . 3 ⊢ (φ → ∀xφ) | |
| 2 | 1 | nfi 1551 | . 2 ⊢ Ⅎxφ |
| 3 | exlimdh.2 | . . 3 ⊢ (χ → ∀xχ) | |
| 4 | 3 | nfi 1551 | . 2 ⊢ Ⅎxχ |
| 5 | exlimdh.3 | . 2 ⊢ (φ → (ψ → χ)) | |
| 6 | 2, 4, 5 | exlimd 1806 | 1 ⊢ (φ → (∃xψ → χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |