NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exlimd GIF version

Theorem exlimd 1806
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
exlimd.1 xφ
exlimd.2 xχ
exlimd.3 (φ → (ψχ))
Assertion
Ref Expression
exlimd (φ → (xψχ))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 xφ
2 exlimd.3 . . 3 (φ → (ψχ))
31, 2alrimi 1765 . 2 (φx(ψχ))
4 exlimd.2 . . 3 xχ
5419.23 1801 . 2 (x(ψχ) ↔ (xψχ))
63, 5sylib 188 1 (φ → (xψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  exlimdh  1807  exlimdd  1889  equs5  1996  exists2  2294  ceqsalg  2884  copsex2t  4609  mosubopt  4613  ov3  5600
  Copyright terms: Public domain W3C validator