| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exlimd | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| exlimd.1 | ⊢ Ⅎxφ |
| exlimd.2 | ⊢ Ⅎxχ |
| exlimd.3 | ⊢ (φ → (ψ → χ)) |
| Ref | Expression |
|---|---|
| exlimd | ⊢ (φ → (∃xψ → χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimd.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | exlimd.3 | . . 3 ⊢ (φ → (ψ → χ)) | |
| 3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀x(ψ → χ)) |
| 4 | exlimd.2 | . . 3 ⊢ Ⅎxχ | |
| 5 | 4 | 19.23 1801 | . 2 ⊢ (∀x(ψ → χ) ↔ (∃xψ → χ)) |
| 6 | 3, 5 | sylib 188 | 1 ⊢ (φ → (∃xψ → χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: exlimdh 1807 exlimdd 1889 equs5 1996 exists2 2294 ceqsalg 2884 copsex2t 4609 mosubopt 4613 ov3 5600 |
| Copyright terms: Public domain | W3C validator |