New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exmidne | GIF version |
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) |
Ref | Expression |
---|---|
exmidne | ⊢ (A = B ∨ A ≠ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 404 | . 2 ⊢ (A = B ∨ ¬ A = B) | |
2 | df-ne 2519 | . . 3 ⊢ (A ≠ B ↔ ¬ A = B) | |
3 | 2 | orbi2i 505 | . 2 ⊢ ((A = B ∨ A ≠ B) ↔ (A = B ∨ ¬ A = B)) |
4 | 1, 3 | mpbir 200 | 1 ⊢ (A = B ∨ A ≠ B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-ne 2519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |