NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exmidne GIF version

Theorem exmidne 2523
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.)
Assertion
Ref Expression
exmidne (A = B AB)

Proof of Theorem exmidne
StepHypRef Expression
1 exmid 404 . 2 (A = B ¬ A = B)
2 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
32orbi2i 505 . 2 ((A = B AB) ↔ (A = B ¬ A = B))
41, 3mpbir 200 1 (A = B AB)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator