NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nonconne GIF version

Theorem nonconne 2524
Description: Law of noncontradiction with equality and inequality. (Contributed by NM, 3-Feb-2012.)
Assertion
Ref Expression
nonconne ¬ (A = B AB)

Proof of Theorem nonconne
StepHypRef Expression
1 pm3.24 852 . 2 ¬ (A = B ¬ A = B)
2 df-ne 2519 . . 3 (AB ↔ ¬ A = B)
32anbi2i 675 . 2 ((A = B AB) ↔ (A = B ¬ A = B))
41, 3mtbir 290 1 ¬ (A = B AB)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-ne 2519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator