| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exp3acom23g | GIF version | ||
| Description: Implication form of exp3acom23 1372. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping. |
| Ref | Expression |
|---|---|
| exp3acom23g | ⊢ ((φ → ((ψ ∧ χ) → θ)) ↔ (φ → (χ → (ψ → θ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomsimp 1369 | . . 3 ⊢ (((ψ ∧ χ) → θ) ↔ ((χ ∧ ψ) → θ)) | |
| 2 | impexp 433 | . . 3 ⊢ (((χ ∧ ψ) → θ) ↔ (χ → (ψ → θ))) | |
| 3 | 1, 2 | bitri 240 | . 2 ⊢ (((ψ ∧ χ) → θ) ↔ (χ → (ψ → θ))) |
| 4 | 3 | imbi2i 303 | 1 ⊢ ((φ → ((ψ ∧ χ) → θ)) ↔ (φ → (χ → (ψ → θ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |