NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exp3acom23g GIF version

Theorem exp3acom23g 1371
Description: Implication form of exp3acom23 1372. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Assertion
Ref Expression
exp3acom23g ((φ → ((ψ χ) → θ)) ↔ (φ → (χ → (ψθ))))

Proof of Theorem exp3acom23g
StepHypRef Expression
1 ancomsimp 1369 . . 3 (((ψ χ) → θ) ↔ ((χ ψ) → θ))
2 impexp 433 . . 3 (((χ ψ) → θ) ↔ (χ → (ψθ)))
31, 2bitri 240 . 2 (((ψ χ) → θ) ↔ (χ → (ψθ)))
43imbi2i 303 1 ((φ → ((ψ χ) → θ)) ↔ (φ → (χ → (ψθ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator