NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ancomsimp GIF version

Theorem ancomsimp 1369
Description: Closed form of ancoms 439. Derived automatically from ancomsimpVD in set.mm. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomsimp (((φ ψ) → χ) ↔ ((ψ φ) → χ))

Proof of Theorem ancomsimp
StepHypRef Expression
1 ancom 437 . 2 ((φ ψ) ↔ (ψ φ))
21imbi1i 315 1 (((φ ψ) → χ) ↔ ((ψ φ) → χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  exp3acom23g  1371  ralcomf  2770
  Copyright terms: Public domain W3C validator