New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi2i | GIF version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
imbi2i | ⊢ ((χ → φ) ↔ (χ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | a1i 10 | . 2 ⊢ (χ → (φ ↔ ψ)) |
3 | 2 | pm5.74i 236 | 1 ⊢ ((χ → φ) ↔ (χ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: imbi12i 316 iman 413 pm4.14 561 nan 563 pm5.32 617 anidmdbi 627 imimorb 847 pm5.6 878 exp3acom23g 1371 19.36 1871 sblim 2068 sban 2069 sbhb 2107 2sb6 2113 2sb6rf 2118 eu1 2225 moabs 2248 moanim 2260 2eu6 2289 axi12 2333 r2alf 2650 r19.21t 2700 r19.35 2759 reu2 3025 reu8 3033 2reu5lem3 3044 ssconb 3400 ssin 3478 difin 3493 reldisj 3595 ssundif 3634 pwpw0 3856 pwsnALT 3883 unissb 3922 evenodddisj 4517 tfinnn 4535 fncnv 5159 fun11 5160 dff13 5472 frds 5936 ncssfin 6152 sbth 6207 spacind 6288 |
Copyright terms: Public domain | W3C validator |