New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi2i | GIF version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
imbi2i | ⊢ ((χ → φ) ↔ (χ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | a1i 10 | . 2 ⊢ (χ → (φ ↔ ψ)) |
3 | 2 | pm5.74i 236 | 1 ⊢ ((χ → φ) ↔ (χ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: imbi12i 316 iman 413 pm4.14 561 nan 563 pm5.32 617 anidmdbi 627 imimorb 847 pm5.6 878 exp3acom23g 1371 19.36 1871 sblim 2068 sban 2069 sbhb 2107 2sb6 2113 2sb6rf 2118 eu1 2225 moabs 2248 moanim 2260 2eu6 2289 axi12 2333 r2alf 2649 r19.21t 2699 r19.35 2758 reu2 3024 reu8 3032 2reu5lem3 3043 ssconb 3399 ssin 3477 difin 3492 reldisj 3594 ssundif 3633 pwpw0 3855 pwsnALT 3882 unissb 3921 evenodddisj 4516 tfinnn 4534 fncnv 5158 fun11 5159 dff13 5471 frds 5935 ncssfin 6151 sbth 6206 spacind 6287 |
Copyright terms: Public domain | W3C validator |