NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exp43 GIF version

Theorem exp43 595
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp43.1 (((φ ψ) (χ θ)) → τ)
Assertion
Ref Expression
exp43 (φ → (ψ → (χ → (θτ))))

Proof of Theorem exp43
StepHypRef Expression
1 exp43.1 . . 3 (((φ ψ) (χ θ)) → τ)
21ex 423 . 2 ((φ ψ) → ((χ θ) → τ))
32exp4b 590 1 (φ → (ψ → (χ → (θτ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  exp53  600  funssres  5145
  Copyright terms: Public domain W3C validator