New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exp43 | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp43.1 | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) |
Ref | Expression |
---|---|
exp43 | ⊢ (φ → (ψ → (χ → (θ → τ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp43.1 | . . 3 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) | |
2 | 1 | ex 423 | . 2 ⊢ ((φ ∧ ψ) → ((χ ∧ θ) → τ)) |
3 | 2 | exp4b 590 | 1 ⊢ (φ → (ψ → (χ → (θ → τ)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: exp53 600 funssres 5145 |
Copyright terms: Public domain | W3C validator |