NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exp53 GIF version

Theorem exp53 600
Description: An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.)
Hypothesis
Ref Expression
exp53.1 ((((φ ψ) (χ θ)) τ) → η)
Assertion
Ref Expression
exp53 (φ → (ψ → (χ → (θ → (τη)))))

Proof of Theorem exp53
StepHypRef Expression
1 exp53.1 . . 3 ((((φ ψ) (χ θ)) τ) → η)
21ex 423 . 2 (((φ ψ) (χ θ)) → (τη))
32exp43 595 1 (φ → (ψ → (χ → (θ → (τη)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator