NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  expi GIF version

Theorem expi 141
Description: An exportation inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
expi.1 (¬ (φ → ¬ ψ) → χ)
Assertion
Ref Expression
expi (φ → (ψχ))

Proof of Theorem expi
StepHypRef Expression
1 pm3.2im 137 . 2 (φ → (ψ → ¬ (φ → ¬ ψ)))
2 expi.1 . 2 (¬ (φ → ¬ ψ) → χ)
31, 2syl6 29 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  bi3  179  ex  423
  Copyright terms: Public domain W3C validator