NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simprim GIF version

Theorem simprim 142
Description: Simplification. Similar to Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
Assertion
Ref Expression
simprim (¬ (φ → ¬ ψ) → ψ)

Proof of Theorem simprim
StepHypRef Expression
1 idd 21 . 2 (φ → (ψψ))
21impi 140 1 (¬ (φ → ¬ ψ) → ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impt  149  bi3  179  bi2  189
  Copyright terms: Public domain W3C validator