NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  expl GIF version

Theorem expl 601
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.)
Hypothesis
Ref Expression
expl.1 (((φ ψ) χ) → θ)
Assertion
Ref Expression
expl (φ → ((ψ χ) → θ))

Proof of Theorem expl
StepHypRef Expression
1 expl.1 . . 3 (((φ ψ) χ) → θ)
21exp31 587 . 2 (φ → (ψ → (χθ)))
32imp3a 420 1 (φ → ((ψ χ) → θ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator