New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imp3a | GIF version |
Description: Importation deduction. (Contributed by NM, 31-Mar-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (φ → (ψ → (χ → θ))) |
Ref | Expression |
---|---|
imp3a | ⊢ (φ → ((ψ ∧ χ) → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . . 4 ⊢ (φ → (ψ → (χ → θ))) | |
2 | 1 | com3l 75 | . . 3 ⊢ (ψ → (χ → (φ → θ))) |
3 | 2 | imp 418 | . 2 ⊢ ((ψ ∧ χ) → (φ → θ)) |
4 | 3 | com12 27 | 1 ⊢ (φ → ((ψ ∧ χ) → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: imp32 422 pm3.31 432 syland 467 imp4c 574 imp4d 575 imp5d 582 expimpd 586 expl 601 3expib 1154 equs5 1996 sbied 2036 rsp2 2677 moi 3020 reu6 3026 sbciegft 3077 pwadjoin 4120 nnsucelr 4429 nndisjeq 4430 leltfintr 4459 ssfin 4471 tfinltfinlem1 4501 evenodddisj 4517 spfininduct 4541 vfinspss 4552 iss 5001 funssres 5145 fv3 5342 tz6.12-1 5345 funfvima 5460 funsi 5521 fnpprod 5844 fundmen 6044 enprmaplem6 6082 leltctr 6213 nchoicelem6 6295 nchoicelem17 6306 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |