| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > impr | GIF version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 | ⊢ ((φ ∧ ψ) → (χ → θ)) |
| Ref | Expression |
|---|---|
| impr | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 | . . 3 ⊢ ((φ ∧ ψ) → (χ → θ)) | |
| 2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
| 3 | 2 | imp32 422 | 1 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: moi2 3018 preq12bg 4129 prepeano4 4452 f1o2d 5728 fndmeng 6047 enprmaplem3 6079 nchoicelem4 6293 fnfrec 6321 |
| Copyright terms: Public domain | W3C validator |