NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  impr GIF version

Theorem impr 602
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
Hypothesis
Ref Expression
impr.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
impr ((φ (ψ χ)) → θ)

Proof of Theorem impr
StepHypRef Expression
1 impr.1 . . 3 ((φ ψ) → (χθ))
21ex 423 . 2 (φ → (ψ → (χθ)))
32imp32 422 1 ((φ (ψ χ)) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  moi2  3018  preq12bg  4129  prepeano4  4452  f1o2d  5728  fndmeng  6047  enprmaplem3  6079  nchoicelem4  6293  fnfrec  6321
  Copyright terms: Public domain W3C validator