NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  falxortru GIF version

Theorem falxortru 1360
Description: A identity. (Contributed by David A. Wheeler, 9-May-2015.)
Assertion
Ref Expression
falxortru (( ⊥ ⊻ ⊤ ) ↔ ⊤ )

Proof of Theorem falxortru
StepHypRef Expression
1 df-xor 1305 . 2 (( ⊥ ⊻ ⊤ ) ↔ ¬ ( ⊥ ↔ ⊤ ))
2 falbitru 1352 . . 3 (( ⊥ ↔ ⊤ ) ↔ ⊥ )
32notbii 287 . 2 (¬ ( ⊥ ↔ ⊤ ) ↔ ¬ ⊥ )
4 notfal 1349 . 2 (¬ ⊥ ↔ ⊤ )
51, 3, 43bitri 262 1 (( ⊥ ⊻ ⊤ ) ↔ ⊤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wxo 1304  wtru 1316  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305  df-tru 1319  df-fal 1320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator