New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > falxortru | GIF version |
Description: A ⊻ identity. (Contributed by David A. Wheeler, 9-May-2015.) |
Ref | Expression |
---|---|
falxortru | ⊢ (( ⊥ ⊻ ⊤ ) ↔ ⊤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1305 | . 2 ⊢ (( ⊥ ⊻ ⊤ ) ↔ ¬ ( ⊥ ↔ ⊤ )) | |
2 | falbitru 1352 | . . 3 ⊢ (( ⊥ ↔ ⊤ ) ↔ ⊥ ) | |
3 | 2 | notbii 287 | . 2 ⊢ (¬ ( ⊥ ↔ ⊤ ) ↔ ¬ ⊥ ) |
4 | notfal 1349 | . 2 ⊢ (¬ ⊥ ↔ ⊤ ) | |
5 | 1, 3, 4 | 3bitri 262 | 1 ⊢ (( ⊥ ⊻ ⊤ ) ↔ ⊤ ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 ⊤ wtru 1316 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-tru 1319 df-fal 1320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |