![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > notbii | GIF version |
Description: Negate both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
notbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
notbii | ⊢ (¬ φ ↔ ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbii.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | notbi 286 | . 2 ⊢ ((φ ↔ ψ) ↔ (¬ φ ↔ ¬ ψ)) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ (¬ φ ↔ ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sylnbi 297 xchnxbi 299 xchbinx 301 oplem1 930 nancom 1290 xorcom 1307 xorass 1308 xorneg2 1312 xorbi12i 1314 trunanfal 1355 falxortru 1360 hadnot 1393 cadnot 1394 nic-axALT 1439 tbw-bijust 1463 rb-bijust 1514 19.43OLD 1606 cbvexvw 1703 excom 1741 cbvex 1985 sb8e 2093 cbvrexf 2830 cbvrexcsf 3199 dfss4 3489 indifdir 3511 complab 3524 difprsnss 3846 pw1disj 4167 dfimak2 4298 dfint3 4318 dfpw2 4327 dfiota4 4372 dfaddc2 4381 dfnnc2 4395 0nelsuc 4400 nnsucelrlem1 4424 nndisjeq 4429 preaddccan2lem1 4454 ltfinex 4464 eqpwrelk 4478 ncfinraiselem2 4480 ncfinlowerlem1 4482 eqtfinrelk 4486 evenfinex 4503 oddfinex 4504 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 srelk 4524 sfintfinlem1 4531 tfinnnlem1 4533 sfinltfin 4535 spfinex 4537 dfop2lem1 4573 brdif 4694 setconslem7 4737 dfswap2 4741 rexiunxp 4824 rexxpf 4828 dmeq0 4922 intirr 5029 cnvdif 5034 imadif 5171 ndmovcl 5614 epprc 5827 funsex 5828 transex 5910 antisymex 5912 connexex 5913 foundex 5914 extex 5915 symex 5916 qsexg 5982 el2c 6191 nmembers1lem3 6270 nchoicelem11 6299 nchoicelem16 6304 fnfreclem1 6317 |
Copyright terms: Public domain | W3C validator |