New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > notbii | GIF version |
Description: Negate both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
notbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
notbii | ⊢ (¬ φ ↔ ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbii.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | notbi 286 | . 2 ⊢ ((φ ↔ ψ) ↔ (¬ φ ↔ ¬ ψ)) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ (¬ φ ↔ ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sylnbi 297 xchnxbi 299 xchbinx 301 oplem1 930 nancom 1290 xorcom 1307 xorass 1308 xorneg2 1312 xorbi12i 1314 trunanfal 1355 falxortru 1360 hadnot 1393 cadnot 1394 nic-axALT 1439 tbw-bijust 1463 rb-bijust 1514 19.43OLD 1606 cbvexvw 1703 excom 1741 cbvex 1985 sb8e 2093 cbvrexf 2831 cbvrexcsf 3200 dfss4 3490 indifdir 3512 complab 3525 difprsnss 3847 pw1disj 4168 dfimak2 4299 dfint3 4319 dfpw2 4328 dfiota4 4373 dfaddc2 4382 dfnnc2 4396 0nelsuc 4401 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 ltfinex 4465 eqpwrelk 4479 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 sfinltfin 4536 spfinex 4538 dfop2lem1 4574 brdif 4695 setconslem7 4738 dfswap2 4742 rexiunxp 4825 rexxpf 4829 dmeq0 4923 intirr 5030 cnvdif 5035 imadif 5172 ndmovcl 5615 epprc 5828 funsex 5829 transex 5911 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 qsexg 5983 el2c 6192 nmembers1lem3 6271 nchoicelem11 6300 nchoicelem16 6305 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |