New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-xor | GIF version |
Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1319) and the constant false ⊥ (df-fal 1320), we will be able to prove these truth table values: (( ⊤ ⊻ ⊤ ) ↔ ⊥ ) (truxortru 1358), (( ⊤ ⊻ ⊥ ) ↔ ⊤ ) (truxorfal 1359), (( ⊥ ⊻ ⊤ ) ↔ ⊤ ) (falxortru 1360), and (( ⊥ ⊻ ⊥ ) ↔ ⊥ ) (falxorfal 1361). Contrast with ∧ (df-an 360), ∨ (df-or 359), → (wi 4), and ⊼ (df-nan 1288) . (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | wps | . . 3 wff ψ | |
3 | 1, 2 | wxo 1304 | . 2 wff (φ ⊻ ψ) |
4 | 1, 2 | wb 176 | . . 3 wff (φ ↔ ψ) |
5 | 4 | wn 3 | . 2 wff ¬ (φ ↔ ψ) |
6 | 3, 5 | wb 176 | 1 wff ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) |
Colors of variables: wff setvar class |
This definition is referenced by: xnor 1306 xorcom 1307 xorass 1308 excxor 1309 xor2 1310 xorneg1 1311 xorbi12i 1314 xorbi12d 1315 truxortru 1358 truxorfal 1359 falxortru 1360 falxorfal 1361 hadbi 1387 had0 1403 mpto2 1534 mpto2OLD 1535 mtp-xorOLD 1537 |
Copyright terms: Public domain | W3C validator |