NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imdistanri GIF version

Theorem imdistanri 672
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
Hypothesis
Ref Expression
imdistanri.1 (φ → (ψχ))
Assertion
Ref Expression
imdistanri ((ψ φ) → (χ φ))

Proof of Theorem imdistanri
StepHypRef Expression
1 imdistanri.1 . . 3 (φ → (ψχ))
21com12 27 . 2 (ψ → (φχ))
32impac 604 1 ((ψ φ) → (χ φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator