NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 671
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (φ → (ψχ))
Assertion
Ref Expression
imdistani ((φ ψ) → (φ χ))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (φ → (ψχ))
21anc2li 540 . 2 (φ → (ψ → (φ χ)))
32imp 418 1 ((φ ψ) → (φ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  nfan1  1881  2eu1  2284  difrab  3530  foconst  5281  dffo4  5424  dffo5  5425
  Copyright terms: Public domain W3C validator