NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  impac GIF version

Theorem impac 604
Description: Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.)
Hypothesis
Ref Expression
impac.1 (φ → (ψχ))
Assertion
Ref Expression
impac ((φ ψ) → (χ ψ))

Proof of Theorem impac
StepHypRef Expression
1 impac.1 . . 3 (φ → (ψχ))
21ancrd 537 . 2 (φ → (ψ → (χ ψ)))
32imp 418 1 ((φ ψ) → (χ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  imdistanri  672  f1elima  5475
  Copyright terms: Public domain W3C validator