NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.33 GIF version

Theorem pm5.33 848
Description: Theorem *5.33 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.33 ((φ (ψχ)) ↔ (φ ((φ ψ) → χ)))

Proof of Theorem pm5.33
StepHypRef Expression
1 ibar 490 . . 3 (φ → (ψ ↔ (φ ψ)))
21imbi1d 308 . 2 (φ → ((ψχ) ↔ ((φ ψ) → χ)))
32pm5.32i 618 1 ((φ (ψχ)) ↔ (φ ((φ ψ) → χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator