| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > imnani | GIF version | ||
| Description: Express implication in terms of conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
| Ref | Expression |
|---|---|
| imnani.1 | ⊢ ¬ (φ ∧ ψ) |
| Ref | Expression |
|---|---|
| imnani | ⊢ (φ → ¬ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnani.1 | . 2 ⊢ ¬ (φ ∧ ψ) | |
| 2 | imnan 411 | . 2 ⊢ ((φ → ¬ ψ) ↔ ¬ (φ ∧ ψ)) | |
| 3 | 1, 2 | mpbir 200 | 1 ⊢ (φ → ¬ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: mpto1 1533 eueq3 3012 |
| Copyright terms: Public domain | W3C validator |