| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rb-ax1 | GIF version | ||
| Description: The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rb-ax1 | ⊢ (¬ (¬ ψ ∨ χ) ∨ (¬ (φ ∨ ψ) ∨ (φ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim2 814 | . . 3 ⊢ ((ψ → χ) → ((φ ∨ ψ) → (φ ∨ χ))) | |
| 2 | imor 401 | . . 3 ⊢ ((ψ → χ) ↔ (¬ ψ ∨ χ)) | |
| 3 | imor 401 | . . 3 ⊢ (((φ ∨ ψ) → (φ ∨ χ)) ↔ (¬ (φ ∨ ψ) ∨ (φ ∨ χ))) | |
| 4 | 1, 2, 3 | 3imtr3i 256 | . 2 ⊢ ((¬ ψ ∨ χ) → (¬ (φ ∨ ψ) ∨ (φ ∨ χ))) |
| 5 | 4 | imori 402 | 1 ⊢ (¬ (¬ ψ ∨ χ) ∨ (¬ (φ ∨ ψ) ∨ (φ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: rbsyl 1521 rblem1 1522 rblem2 1523 rblem4 1525 re2luk1 1530 |
| Copyright terms: Public domain | W3C validator |