NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imp41 GIF version

Theorem imp41 576
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (φ → (ψ → (χ → (θτ))))
Assertion
Ref Expression
imp41 ((((φ ψ) χ) θ) → τ)

Proof of Theorem imp41
StepHypRef Expression
1 imp4.1 . . 3 (φ → (ψ → (χ → (θτ))))
21imp 418 . 2 ((φ ψ) → (χ → (θτ)))
32imp31 421 1 ((((φ ψ) χ) θ) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  3anassrs  1173  ralrimivvva  2708
  Copyright terms: Public domain W3C validator