| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ralrimivvva | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| ralrimivvva.1 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B ∧ z ∈ C)) → ψ) | 
| Ref | Expression | 
|---|---|
| ralrimivvva | ⊢ (φ → ∀x ∈ A ∀y ∈ B ∀z ∈ C ψ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrimivvva.1 | . . . . . 6 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B ∧ z ∈ C)) → ψ) | |
| 2 | 1 | 3exp2 1169 | . . . . 5 ⊢ (φ → (x ∈ A → (y ∈ B → (z ∈ C → ψ)))) | 
| 3 | 2 | imp41 576 | . . . 4 ⊢ ((((φ ∧ x ∈ A) ∧ y ∈ B) ∧ z ∈ C) → ψ) | 
| 4 | 3 | ralrimiva 2698 | . . 3 ⊢ (((φ ∧ x ∈ A) ∧ y ∈ B) → ∀z ∈ C ψ) | 
| 5 | 4 | ralrimiva 2698 | . 2 ⊢ ((φ ∧ x ∈ A) → ∀y ∈ B ∀z ∈ C ψ) | 
| 6 | 5 | ralrimiva 2698 | 1 ⊢ (φ → ∀x ∈ A ∀y ∈ B ∀z ∈ C ψ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∈ wcel 1710 ∀wral 2615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-nf 1545 df-ral 2620 | 
| This theorem is referenced by: caovassg 5627 caovdig 5633 caovdirg 5634 | 
| Copyright terms: Public domain | W3C validator |