| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqrdav | GIF version | ||
| Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) |
| Ref | Expression |
|---|---|
| eqrdav.1 | ⊢ ((φ ∧ x ∈ A) → x ∈ C) |
| eqrdav.2 | ⊢ ((φ ∧ x ∈ B) → x ∈ C) |
| eqrdav.3 | ⊢ ((φ ∧ x ∈ C) → (x ∈ A ↔ x ∈ B)) |
| Ref | Expression |
|---|---|
| eqrdav | ⊢ (φ → A = B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdav.1 | . . . 4 ⊢ ((φ ∧ x ∈ A) → x ∈ C) | |
| 2 | eqrdav.3 | . . . . . 6 ⊢ ((φ ∧ x ∈ C) → (x ∈ A ↔ x ∈ B)) | |
| 3 | 2 | biimpd 198 | . . . . 5 ⊢ ((φ ∧ x ∈ C) → (x ∈ A → x ∈ B)) |
| 4 | 3 | impancom 427 | . . . 4 ⊢ ((φ ∧ x ∈ A) → (x ∈ C → x ∈ B)) |
| 5 | 1, 4 | mpd 14 | . . 3 ⊢ ((φ ∧ x ∈ A) → x ∈ B) |
| 6 | eqrdav.2 | . . . 4 ⊢ ((φ ∧ x ∈ B) → x ∈ C) | |
| 7 | 2 | exbiri 605 | . . . . . 6 ⊢ (φ → (x ∈ C → (x ∈ B → x ∈ A))) |
| 8 | 7 | com23 72 | . . . . 5 ⊢ (φ → (x ∈ B → (x ∈ C → x ∈ A))) |
| 9 | 8 | imp 418 | . . . 4 ⊢ ((φ ∧ x ∈ B) → (x ∈ C → x ∈ A)) |
| 10 | 6, 9 | mpd 14 | . . 3 ⊢ ((φ ∧ x ∈ B) → x ∈ A) |
| 11 | 5, 10 | impbida 805 | . 2 ⊢ (φ → (x ∈ A ↔ x ∈ B)) |
| 12 | 11 | eqrdv 2351 | 1 ⊢ (φ → A = B) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-cleq 2346 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |