NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  impbidd GIF version

Theorem impbidd 181
Description: Deduce an equivalence from two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
impbidd.1 (φ → (ψ → (χθ)))
impbidd.2 (φ → (ψ → (θχ)))
Assertion
Ref Expression
impbidd (φ → (ψ → (χθ)))

Proof of Theorem impbidd
StepHypRef Expression
1 impbidd.1 . 2 (φ → (ψ → (χθ)))
2 impbidd.2 . 2 (φ → (ψ → (θχ)))
3 bi3 179 . 2 ((χθ) → ((θχ) → (χθ)))
41, 2, 3syl6c 60 1 (φ → (ψ → (χθ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  impbid21d  182  pm5.74  235
  Copyright terms: Public domain W3C validator