New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.74 | GIF version |
Description: Distribution of implication over biconditional. Theorem *5.74 of [WhiteheadRussell] p. 126. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 11-Apr-2013.) |
Ref | Expression |
---|---|
pm5.74 | ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ → ψ) ↔ (φ → χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi1 178 | . . . 4 ⊢ ((ψ ↔ χ) → (ψ → χ)) | |
2 | 1 | imim3i 55 | . . 3 ⊢ ((φ → (ψ ↔ χ)) → ((φ → ψ) → (φ → χ))) |
3 | bi2 189 | . . . 4 ⊢ ((ψ ↔ χ) → (χ → ψ)) | |
4 | 3 | imim3i 55 | . . 3 ⊢ ((φ → (ψ ↔ χ)) → ((φ → χ) → (φ → ψ))) |
5 | 2, 4 | impbid 183 | . 2 ⊢ ((φ → (ψ ↔ χ)) → ((φ → ψ) ↔ (φ → χ))) |
6 | bi1 178 | . . . 4 ⊢ (((φ → ψ) ↔ (φ → χ)) → ((φ → ψ) → (φ → χ))) | |
7 | 6 | pm2.86d 93 | . . 3 ⊢ (((φ → ψ) ↔ (φ → χ)) → (φ → (ψ → χ))) |
8 | bi2 189 | . . . 4 ⊢ (((φ → ψ) ↔ (φ → χ)) → ((φ → χ) → (φ → ψ))) | |
9 | 8 | pm2.86d 93 | . . 3 ⊢ (((φ → ψ) ↔ (φ → χ)) → (φ → (χ → ψ))) |
10 | 7, 9 | impbidd 181 | . 2 ⊢ (((φ → ψ) ↔ (φ → χ)) → (φ → (ψ ↔ χ))) |
11 | 5, 10 | impbii 180 | 1 ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ → ψ) ↔ (φ → χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.74i 236 pm5.74ri 237 pm5.74d 238 pm5.74rd 239 bibi2d 309 pm5.32 617 orbidi 898 |
Copyright terms: Public domain | W3C validator |