NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  impcon4bid GIF version

Theorem impcon4bid 196
Description: A variation on impbid 183 with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009.)
Hypotheses
Ref Expression
impcon4bid.1 (φ → (ψχ))
impcon4bid.2 (φ → (¬ ψ → ¬ χ))
Assertion
Ref Expression
impcon4bid (φ → (ψχ))

Proof of Theorem impcon4bid
StepHypRef Expression
1 impcon4bid.1 . 2 (φ → (ψχ))
2 impcon4bid.2 . . 3 (φ → (¬ ψ → ¬ χ))
32con4d 97 . 2 (φ → (χψ))
41, 3impbid 183 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  con4bid  284
  Copyright terms: Public domain W3C validator