New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimpri | GIF version |
Description: Infer a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Sep-2013.) |
Ref | Expression |
---|---|
biimpri.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
biimpri | ⊢ (ψ → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpri.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | bicomi 193 | . 2 ⊢ (ψ ↔ φ) |
3 | 2 | biimpi 186 | 1 ⊢ (ψ → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mpbir 200 sylibr 203 sylbir 204 syl5bir 209 syl6ibr 218 bitri 240 mtbi 289 pm2.54 363 sylanbr 459 sylan2br 462 pm3.11 485 orbi2i 505 pm2.31 511 simplbi2 608 dfbi 610 pm2.85 826 rnlem 931 syl3an1br 1221 syl3an2br 1222 syl3an3br 1223 3impexpbicom 1367 nic-axALT 1439 sbbii 1653 hbn1fw 1705 equveli 1988 exmoeu 2246 eueq2 3011 ralun 3446 ssunieq 3925 cnvkexg 4287 p6exg 4291 ssetkex 4295 sikexg 4297 ins2kexg 4306 ins3kexg 4307 peano5 4410 ltfinirr 4458 spfininduct 4541 vfinspnn 4542 opbrop 4842 ndmima 5026 dminss 5042 dffo2 5274 dff1o2 5292 resdif 5307 f1o00 5318 ressnop0 5437 ovg 5602 clos1induct 5881 ssetpov 5945 nenpw1pwlem2 6086 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |