NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  con4bid GIF version

Theorem con4bid 284
Description: A contraposition deduction. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bid.1 (φ → (¬ ψ ↔ ¬ χ))
Assertion
Ref Expression
con4bid (φ → (ψχ))

Proof of Theorem con4bid
StepHypRef Expression
1 con4bid.1 . . . 4 (φ → (¬ ψ ↔ ¬ χ))
21biimprd 214 . . 3 (φ → (¬ χ → ¬ ψ))
32con4d 97 . 2 (φ → (ψχ))
41biimpd 198 . 2 (φ → (¬ ψ → ¬ χ))
53, 4impcon4bid 196 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  notbid  285  notbi  286  had0  1403  necon4abid  2581  sbcne12g  3155  isomin  5497
  Copyright terms: Public domain W3C validator